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The unitary operator ofsuq(n)-covariant oscillator algebra is constructed and two types
of q-coherent states are obtained explicitly.
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Since theq-deformation of a single-mode oscillator algebra (Arik and Coon,
1976; Biedenharn, 1989; Macfarlane, 1989) was known, the multimode extension
has attracted much interest. The development of differential calculus in noncom-
mutative (quantized) spaces enabled us to extend the single-modeq-oscillator
algebra into the multimode case (Pusz and Woronowicz, 1989). The multimode
q-oscillator algebra was shown to be covariant under some quantum groups such
asglq(n), slq(n), suq(n), and so on.

In this paper, we deal with thesuq(n)-covariant oscillator algebra and con-
struct its unitary operator. We use it to present two types ofq-coherent states.
One is theq-analogue of the Glauber-type coherent states and the other of the
Perelomov-type.

Thesuq(n)-covariant oscillator algebra is defined by

ai aj = qaj ai (i < j ),

a†i a†j = q−1a†j a
†
i (i < j ),

ai a
†
j = qa†j ai (i 6= j ),

ai a
†
i = 1+ q2a†i ai + (q2− 1)

i−1∑
k=1

a†kak,
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[Ni , a†j ] = δi j a
†
j ,

[Ni , aj ] = −δi j aj , (1)

where the deformation parameterq is assumed to be real. Algebra (1) is invariant
under the hermitian conjugation, and soa†i can be interpreted as the conjugation
operator ofai andNi is hermitian. The proof ofsuq(n)-covariance of this algebra
and its Fock representation is given in Jagannathanet al. (1992). Using the Fock
representation given in Jagannathanet al. (1992), the relation between number
operators and step operators is given by

a†i ai = q2
∑i−1

k=1 Nk [Ni ], (2)

where theq-number is defined by

[x] = q2x − 1

q2− 1
.

Using relation (2), the forth relation can be rewritten as

[ai , a†i ] =
i−1∏
k=1

Qk, (3)

where the scale operatorQk is defined by

Qk = q2Nk . (4)

Let us introduce two types ofq-deformed exponential functions as follows:

eq2(x) =
∞∑

n=0

xn

[n]!
,

Eq2(x) =
∞∑

n=0

qn(n−1)xn

[n]!
, (5)

where twoq-deformed exponential functions satisfy

Eq2(x) eq2(−x) = 1. (6)

By use of the definition of theq-exponential function and relation (3), we have the
following identity:

eq2(tai )a
†
i =

(
a†i + t

i−1∏
k=1

Qk

)
eq2(tai ). (7)

If L R= q2RL, we have

eq2(R) eq2(L) = eq2(R+ L). (8)
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Using property (8), Eq. (7) can be rewritten as

eq2(tai ) eq2(ra†i ) = eq2(ra†i ) eq2

(
r t

i−1∏
k=1

Qk

)
eq2(tai ). (9)

Now, we will find out the unitary operator for algebra (1). Some properties
of q-exponential functions enable us to determine the correct form of the unitary
operator:

U (w) = UN(wN)UN−1(wN−1) · · ·U1(w1), (10)

where

Ui (wi ) = e−1/2
q2

(
|wi |2

i−1∏
k=1

Qk

)
Eq2(wi a

†
i ) eq2(−w̄i ai ) (11)

andwi andw̄i are commuting variables (ordinary complex variables). It can be
easily verified that the operatorU (w) defined in Eq. (10) is unitary,

U (w)U †(w) = U †(w)U (w) = 1 (12)

Indeed, let|n1, . . . , nN〉 be the system of eigenstates of the number operatorsNi

obeying

Ni |n1, . . . , nN〉 = ni |n1, . . . , nN〉. (13)

Sincea†i (or ai ) plays a role of raising (or lowering) operator, relation (2) gives the
matrix representation ofa†i andai :

a†i |n1, . . . , nN〉 = q
∑i−1

k=1 nk
√

[ni + 1]|n1, . . . , ni+1, . . . , nN〉,
ai |n1, . . . , nN〉 = q

∑i−1
k=1 nk

√
[ni ]|n1, . . . , ni−1, . . . , nN〉, (14)

We determine the matrix coefficients of the unitary operatorU (w):

Tn1,...,nN

n′1,...,n′N
= 〈n1, . . . , nN |U †(−w1, . . . ,−wN)|n′1, . . . , n′N〉

= 6〈n1, . . . , nN |U †1 (−w1)|n(1)
1 , . . . , n(1)

N

〉
× 〈n(1)

1 , . . . , n(1)
N |U †2 (−w2)|n(2)

1 , . . . , n(2)
N

〉
· · · 〈n(N−1)

1 , . . . , n(N−1)
N |U †N(−wN)|n′1, . . . , n′N

〉
, (15)

where

(T (i ))n1,...,nN

n′1,...,n′N
= 〈n1, . . . , nN |U †i (−wi )|n′1, . . . , n′N〉

=
∏
j 6=i

δnj ,n′j e−1/2
q2

(
|wi |2q

∑i−1
k=1 n′k

)
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× (−)n′i w̄
n′i
i wni

i qn′i (n
′
i−1)+(ni+n′i )

∑i−1
k=1 nk√

[ni ]![ n′i ]!

× 2φ0

q−2ni , q−2n′i ; –;
q2
(

1+ni−
∑i−1

k=1 nk
)

(1− q2)|wi |2

 . (16)

Here, the symbol 2φ0 denotes the basic hypergeometric function (Gasper and
Rhaman, 1990)

2φ0(a, b; –;x) =
∞∑

k=0

(a; q2)k(b; q2)k(−1)kq−k(k−1)

(q2; q2)k
xk, (17)

where the Pochhammerq-symbol (orq-shifted factorial) is defined by

(a; q2)k = (1− a)(1− q2a) · · · (1− aq2k−2) (18)

The function 2φ0 in Eq. (16) is called the Charlierq-polynomial (Nikiforovet al.,
1985) because, forq = 1, it is identical to the ordinary Charlier polynomials
(Granovskii and Zhedanov, 1986). In the classical limit (q→ 1), the transition
coefficients can be expressed in terms of Charlier polynomial, and so (T (i ))n1,...,nN

n′1,...,n′N
can be regarded as theq-analogue of the transition coefficient. At this stage, the
physical meaning ofq-transition coefficients in unclear.

From formula (14), it is possible to obtain expressions for the two types ofq-
coherent states. One is theq-analogue of Glauber-type coherent state and another
q-analogue of Perelomov-type coherent state. Theq-analogue of Glauber-type
coherent state is defined by

ai |w1, . . . , wn〉 = wi |qw1, . . . , qwi−1, wi , . . . , wn〉. (19)

In this case, theq-coherent state is not a coherent state because it is not a coherent
state, which implies that it is not an eigenstate of annihilation operator. It comes
from the fact that we adopted the ordinary complex variables as coherent variables
and thatai anda†i do not commute among themselves.

From this we find that it has the explicit form

|w〉 = U †(−w1, . . . ,−wn)|0〉

=
[ ∞∏

i=1

e−1/2
q2

(|wi |2
)] ∞∑

n1,...,nn

wnn
n . . .wn1

1√
[nn]! · · · [n1]!

|n1, . . . , nn〉. (20)

It can be easily checked that the aboveq-coherent states are normalized:

〈w1, . . . , wN |w1, . . . , wN〉 = 1. (21)
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The Perelomov-type coherent state is defined as the vacuum for the shifted
q-annihilation operator

bi |w̄1, . . . , w̄N〉 = 0, (22)

wherebi is unitary transform ofai ;

bi = Uai U
†, (23)

wherebi is the unitary transform ofai : From this we obtain

|w̄i 〉 = U (w1, . . . , wn)|0〉 =
∞∑

n1,...,nn

(
n∏

k=1

e−1/2
q2

(|wk|2q2
∑k

l=1 nl
))

×
(
qn−1w1

)n1
(
qn−2w2

)n2 · · · (qwn−1)nn−1wnn
n√

[n1]! · · · [nn]!
|n1, . . . , nn〉. (24)

From Eqs. (20) and (24), we see the difference between the Glauber-type
and Perelomov-typeq-coherent states. The difference results from the fact that in
theq-analogue of the unitary operator, the operatorU (w) andU †(−w) are very
different:

U (w) 6= U †(−w). (25)

Therefore, these operators generate different sheaves ofq-coherent states.
We recall that the eigenfunction problem forq-position operator satisfying

Xiψ = q−
∑i−1

k=1 Nk (ai + a†i )ψ = xiψ (26)

generates theq-Hermite polynomials. Then, allq-position operators are commut-
ing among themselves:

[Xi , X j ] = 0. (27)

Let us expandψ with respect to number eigenstate of algebra (1):

ψ =
∞∑

n1,...,nN

Cn1,...,nN (x1, . . . , xN)|n1, . . . , xN〉 (28)

and write the expansion coefficients in the form

Cn1, . . . , nN(x1, . . . , xN) = C0(x1, . . . , xN)Pn1,...,nN (x1, . . . , xN). (29)

Then, the functionPn1,...,nN satisfies the recurrence relation√
[ni + 1]Pn1,...,ni+1,...,nN +

√
[ni ] Pn1,...,ni−1,...,nN = xi Pn1,n2,...,nN (30)
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with initial conditionP0,0,...,0 = 1. Equation (30) shows that then-variable function
Pn1,...,nN is separable:

Pn1,...,nN =
N∏

i=1

Pi (xi ). (31)

Inserting Eq. (31) into Eq. (30) we have√
[ni + 1]Pi+1+

√
[ni ] Pi−1 = xi Pi . (32)

The solution of Eq. (31) depends upon the value ofq. Whenq > 1, it takes the
form

Pi (xi ) = 1√
(q2; q2)ni

hni

(
1

2
(q2− 1)xi | q2

)
, (33)

wherehn(x | q2) is q-Hermite polynomial studied by Askey (1989). When 0<
q < 1, it takes the form

Pi (xi ) = 1√(
q2; q2

)
ni

Hni

(
1

2
(1− q2)xi | q2

)
, (34)

whereHn(x | q2) is called the continuousq-Hermite polynomial (Askey and Is-
mail, 1983).

We now consider the eigenvalue problem for the shiftedq-position operator.
Since the number operator is not changed under the unitary transformation, the
shiftedq-position operator obeys

X̃i ψ̃ = q
∑i−1

k=1 Nk (bi + b†i )ψ̃ = xi ψ̃. (35)

Like Eq. (29), we can expand̃ψ with repect to the number eigenstates as follows:

ψ̃ =
∞∑

n1,...,nN

C̃n1,···,nN (x1, . . . , xN)|n1,...,xN〉 (36)

and write the expansion coefficients in the form

C̃n1,···,nN (x1, . . . , xN) = C̃0(x1, . . . , xN)P̃n1,...,nN (x1, . . . , xN). (37)

Similarly we can factorizẽPn1,...,nN (x1, . . . , xN) as follows

P̃n1,...,nN =
N∏

i=1

P̃i (xi ) (38)

Inserting Eq. (38) into Eq. (35), we have the following three-term recurrence
relation √

[ni + 1]
(
1− |ẇi |2(1− q2)q2ni

)
P̃i+1− 2Re(wi )q

2ni P̃i



P1: IBB

International Journal of Theoretical Physics [ijtp] PP647-ijtp-453630 November 1, 2002 20:56 Style file version May 30th, 2002

Unitary Operator of suq(n)-Covariant Oscillator Algebra 1977

+
√

[ni ]
(
1− |wi |2(1− q2)q2ni−2

)
P̃i−1 = xi P̃i . (39)

Relation (29) again generates a certain system of orthogonal polynomialsP̃i ,
which is a kind of deformation of an ordinary Hermite polynomial depending on
the parameterxi . It is worth nothing that the family of polynomials̃P(xi ; wi ) is
isospectral, i.e. the spectrumxi does not depend on the parameterwi since

ψ̃ = U (w)ψ. (40)

In the classical limitq→ 1, we have

P̃i (xi ; wi ) = Hni (xi + 2Re(wi )), (41)

which implies that the unitary transformU (w) is a shift of the force center of the
oscillator.

To conclude, in this paper, I have studied two types ofq-coherent states of
suq(n)-covariant oscillator algebra. One was the Glauber-typeq-coherent state
and another the Perelomov-typeq-coherent state. In order to obtain the correct
form of q-coherent states, I found out the unitary operator forsuq(n)-covariant
oscillator algebra. As is different from the classical (q→ 1) case, the Glauber-type
q-coherent state is not a coherent state in the ordinary sense because it is not an
eigenstate of annihilation operator. It comes from the fact that the step operators
of this algebra are noncommutative among themselves and that I used ordinary
complex (notq-commuting) variables as coherent variables.
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